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pa2VV  VVp = 0,  p(VV)V  +V  p  = 0, VVs = 0 (I)

where V,  p, s, p, a denote velocity vector, pressure, entropy, density and
velocity of sound respectively; as is known the last two functions are

1 —7 Pp = 1)11' exp — -  s J, a- =

Here all the functions are assumed to be dimensionless, with some length
(for ducts it is the entrance radius), the free stream velocity  V oo and the ambient
density  p  being used as the reference quantities.
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FIG. 1 — Flow about a duct at the angle of attack

By introducing instead of  r  the new independent variable

r —p tit)
— rsoc,o—ri3(x,t1t)

the region of integration on the plane x =const is transformed into the circular
annulus. Then the system (1) in the variables x, (;, will contain the derivatives
of five basic unknown functions — velocity components  u, u, w  along the
cylindrical co-ordinates axes; pressure  p ;  entropy  s.

In addition the following functions À and  p  are included in this system

2 = 41.Sf r Bx) = —r[4r — rBO+ rthk]

where the prime and the subscripts denote the corresponding derivatives.
From this transformed three-dimensional system the independent variable
will be eliminated by means of approximations of all the functions with

 trigonometric polynomials in

i, for which the meridian planes i/J  = krcll
(k =  0, 1, . . j) are served as the nodes of interpolation. In this case the even
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the value a will be found as for the corresponding wedge in the stream with
the Mach number Moo and the angle of attack 5c. Then the inclination angle
of the shock wave a will be calculated by iterations from the next trigonometric
equation

1 7 +1 

— ) tan  (o- +

tan (co + 5) 2 M2„sin2 (a + 5c)— 1

Further it is not difficult to find the values of velocity components  u, v, w,
pressure  p  and entropy s at the leading edge of the body behind the shock
wave on each meridian plane tp . The start of the solution is carried out
within small step Ax with these initial data assuming all the parameters to be
constant as for the flow about a wedge.

The calculations were accomplished for the supersonic flow about the ducts
having the configuration of a frustum of a cone with semi-angle co. The series
of variants was calculated for different values of duct angle u), free-stream
Mach number 111„, and angle of attack a. (Only the cases when a < co were
considered, that is the rarefaction wave does not take place at the leading
edge.) The specific heat ratio y was taken as y = 1.4.

In Figs. 2-8 some results of these calculations are presented; they were
obtained for 5 meridian planes and 25 nodal points on each ray.
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FIG. 3 — Pressure distribution along the duct with a, = 20' at the angle of


attack a —100 for various free-stream Mach numbers M„,
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The pressure distribution  p= p(x)  along the surface of the body in the gas
stream with Mach number  M ,= 4 is plotted in Fig. 2 for different angles of
attack. The solid lines correspond to the windward side 0=0 and the dotted
lines correspond to the leeward side 0=7C. In the intermediate planes

= const the curves  p=p(x)  have analogous forms. The small circles here and
further denote the appropriate results for the flow about the sharp cone with
the same semi-angle  co,  calculated by the finite-difference method of ref. 4. As
is obvious for the flow about the duct at the angle of attack the pressure
approaches rapidly to the asymptotic value corresponding to the sharp cone.

The similar graph of the pressure distribution is given in Fig. 3 for the
duct with w =200, a =100 and for the various values of free-stream Mach
number M. In Fig. 4 the shock wave traces on the planes 0=0 and 0=m
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FIG. 4 — The shock waves in the plane of symmetry for the duct i =20 at

a = 10° and various Mach numbers Moo
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are shown for the same case. At large distances the shock wave inclinations
tend also to the corresponding inclinations for the sharp cone. It is interesting
that for the hypersonic Mach numbers the shock layer thickness on the wind-
ward side is less than that on the leeward side.

The variation of the pressure across the shock layer between the body
surface = 0 and the shock wave = 1 is given in Fig. 5. These results are
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ki. 5 — V ariation of pressure across the shock layer for the duct w 20 at

= 10 and various Mach numbers M,

obtained for the duct with w = 20 at x = 10 and various values of M. The
pressure profiles are shown for sufficiently large distance x= 14 where these
curves are already close to the corresponding dependences for the sharp cone.
It can be seen from this graph that the more rapid approach takes place for
the greater Mach number M and on the windward side.

The behaviour of entropy s on the external surface of a duct is interesting
at different values of x. In contrast to the sharp cone the external surface of
the duct at the angle orattack is not the constant entropy surface. Here the
lines of constant entropy represent some curves and only two lines s = const
lying in the plane of symmetry of the flow will be straight. Figure 6 shows the
entropy dependence s=s(0) on the body surface for several planes x= const
in the case w = 20 , M = 4 and x =10.

The pressure distribution against angular variable ii is plotted on Fig. 7.
The shape of the shock wave r =t-s(iP)in the planes x=const are drawn in
Fig. 8 for w= 10 , M ,= 4 and oc = 5°. The curves shown in these two graphs are










