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1. INTRODUCTION

The solution of the problem of the gas flow about a body at the angle of
attack consists of the integration of three-dimensional non-linear system of
gasdynamic equations and may be obtained efficiently only by numerical
methods on electronic digital computers. Numerical calculations give not
only the total aerodynamic forces acting on the flying body but the flow fields
as well. In the numerical calculations it is not difficult to take into account the
physical-chemical processes taking place in the gas stream at high tem-
peratures.

For the calculation of three-dimensional supersonic flow about a body it is
possible to use different numerical methods such as the finite difference
method, the method of integral relations or the method of characteristics. A
number of numerical schemes of the method of characteristics was proposed
by different authors.

For the analysis of three-dimensional supersonic gas flow about a body the
method of characteristics has certain merits since it possesses a larger mathe-
matical rigour and accurately takes into account the propagation of distur-
bances — the last property is of special importance for investigation of the
flow about a body with discontinuity of contour and when secondary shock
waves arise inside the flow field. Also in the method of characteristics stream-
lines are determined along which physical-chemical processes take place; this
simplifies the calculation of these phenomena. At the same time some
limitations are inherent in the method of characteristics in its pure form. These
limitations are connected with laborious computations and complicated
shapes of characteristic surfaces.

Therefore the application of so-called semi-characteristic schemes is of
interest for the calculation of three-dimensional supersonic flow about smooth
bodies. In such schemes one of the independent variables is eliminated by



310 Aerospace Proceedings 1966

means of approximation and the problem is essentially reduced to the solution
of a system of equations in two variables but for the larger number of un-
known functions. This approximating system may be integrated numerically
by the two-dimensional method of characteristics.

In comparison with the usual method of characteristics it requires less com-
putation and the programme logic is simpler.

The numerical scheme of such a type in which cylindrical co-ordinates are
considered and trigonometrical interpolations in the angular variable i are
used was developed by O. N. Katskova and P. I. Chushkin‘*. This scheme
has second-order accuracy. Here the calculations are carried out along strips
perpendicular to the axis of the body. In each meridian plane the characteris-
tics are projected upstream in the direction of the previous strip and the nodes
of network are placed in the points fixed beforehand.

A semi-characteristic scheme was applied also by G. Moretti‘® for the
calculation of supersonic flow about bodies. However this scheme, in com-
parison with the above'", has some shortcomings. It has only the first-order
accuracy (the characteristics are projected downstream), only linear approxi-
mations iny are employed and the straightening out of the considered region
is not carried out, which creates certain difficulties at calculation near the
boundaries.t R. Sauer‘®’ also described one semi-characteristic scheme, but
no results of calculations were presented.

In this report our numerical semi-characteristic scheme is applied for the
calculation of the external supersonic flow about a duct at the angle of attack
with the attached shock wave.

2. NUMERICAL METHOD

Let us describe briefly the method applied for calculation of the supersonic
steady flow about a body placed at the angle of attack « in the uniform
gas stream with velocity V and Mach number M_. For simplicity we
confine ourselves to the case of the perfect gas with the constant specific heat
ratio y.

Take the cylindrical system of co-ordinates x, r, |y connected with the body
(Fig. 1). The body is supposed to have the plane of symmetry in which the
velocity vector ¥V, lies; let the plane iy =0 corresponds to the windward side
of the body and the plane yy == to the leeward side. The flow must be calcu-
lated in the region bounded by the given body surface r=rg(x, ) and the
unknown surface of the shock wave r=rg(x, ) for0<y <n.

The system of gasdynamic equations is taken in the following form

T Recently, G. Moretti in a brief note (4144 Journal, 1966, 4, No. 9, 1695) has
communicated certain improvements in his scheme.
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pa*VV+VVp =0, p(VV)V+Vp=0, VVs=0 (1)

where V, p, s, p, a denote velocity vector, pressure, entropy, density and
velocity of sound respectively; as is known the last two functions are
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Here all the functions are assumed to be dimensionless, with some length
(for ducts it is the entrance radius), the free stream velocity V,, and the ambient
density p, being used as the reference quantities.
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Fi1G. 1| — Flow about a duct at the angle of attack

By introducing instead of r the new independent variable &

_ oY)
rS(xv ltb)_ TB(X, 'J’)

the region of integration on the plane x =const is transformed into the circular
annulus. Then the system (1) in the variables x, &, will contain the derivatives
of five basic unknown functions — velocity components u, v, w along the
cylindrical co-ordinates axes; pressure p; entropy s.

In addition the following functions 4 and p are included in this system

it
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where the prime and the subscripts denote the corresponding derivatives.
From this transformed three-dimensional system the independent variable
i will be eliminated by means of approximations of all the functions with
trigonometric polynomials in s, for which the meridian planes y =y, =kn/l
(k=0, 1, ..., 1) are served as the nodes of interpolation. In this case the even
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functions f=u, v, p, s and the odd function w will be approximated respectively
by the expressions
=1

1 !

S, 8, 9) = kZD bux,&)cosky, w(x,{, ) = kZ,l ay(x, &) sin kys (2

As a result we obtain the approximating system of two-dimensional

equations in x and £ with respect to the values of the basic unknown functions

on all the meridian interpolational planes iy =,. It is found that for the
condition

W+ 0+ pw)’ (14 p%) > a®
this approximating system will be hyperbolic possessing two families of real
characteristics and one family of the lines which by analogy with the axi-
symmetric case may be called conditionally the ‘streamlines’. For the con-

venience of calculations on digital computers it is advisable to introduce two
new functions

1 242 2 1/2
(=to+ww) and  p= ["—§-+(1+u2)(52_1)]
u a a

In this case the differentional characteristic equations and the compatibility
relations can be written as follows
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where the different signs correspond to the characteristics of the different

families.
For the ‘streamlines’ we have the following differential equation and

relations
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In equations (3)-(4)
& = rs(x,y)—rp(x,y)

i 1 ow W (?p
v a.p pa? aw
w du

r oy

O, = - ((:{1/ w)

¢4=1( LA )
r !,{l prg(/

w ds

q):
0 rcw

The equations (3) and (4) are represented in the finite-difference form by the
scheme of second-order accuracy. The solution is found step by step on
successive planes x=const where the nodal points are chosen at fixed values
¢=const equal for each of the /+1 considered rays yy=const. The charac-
teristics and the ‘streamlines’ are projected from these nodal points to the
intersection with the previous plane x=const. The necessary values of
functions in these intersection points are determined by interpolation. The
flow functions in the nodes of networks are found by iterations from the
finite-difference system.

While solving the problem it is necessary to calculate nodal points inside
the flow field, on the shock wave ({=1) and on the body surface ({=0). The
gasdynamic relations for the strong discontinuity are used additionally for
the calculation of the shock wave points. The condition of vanishing of normal
velocity is applied for the calculation of the body surface points. The detailed
numerical procedures are given in ref. 1 for all these cases. In that paper the
present numerical method is developed in the general form for the equilibrium
flow of real gas.

The choice of /+ 1 number of interpolational planes y =y, and number of
nodal points in each of such planes depend on the required accuracy of
solution. The step size Ax is determined by the numerical stability condition.

3. SoME NUMERICAL RESULTS

The described numerical method was used for the calculation of supersonic
flows about various bodies with blunt or sharp nose parts. Here we shall
represent some numerical results for the external flow about ducts at the
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angle of attack in the supersonic stream of perfect gas. We considered the
case when the shock wave is attached to the leading edge of the duct and when
therefore the flow about external surface of the inlet does not depend on the
flow inside the duct (Fig. 1).

Before the calculation of the entire flow field it is necessary to obtain the
initial data at the entrance of the duct at x=0. The inclination angle of the
shock wave o to the x-axis at the leading edge of the body of revolution is
determinated only by the x and r velocity components of the incident stream

u, =V, cosa, v, = —V_sinazcosy

While the 0 velocity component w,_ =V sin asiniy does not affect the
quantity ¢ and remains continuous across the shock wave. Therefore it
should be considered an effective angle of attack & and an effective Mach
number M which are expressed as

B — cos o
tana =tanacosy, M, =M

“cos i

Hence for the given inclination angle of duct surface at the leading edge w
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F1G. 2 — Pressure distribution along the duct with  =20° for M_ =4 at
various angles of attack «
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the value ¢ will be found as for the corresponding wedge in the stream with
the Mach number M, and the angle of attack &. Then the inclination angle
of the shock wave o will be calculated by iterations from the next trigonometric
equation

1 (y+1 M2

. e A R 1 t o
tan (w+ &) 2 Misinz(a+&)—l) i

Further it is not difficult to find the values of velocity components u, v, w,
pressure p and entropy s at the leading edge of the body behind the shock
wave on each meridian plane s =y,. The start of the solution is carried out
within small step Ax with these initial data assuming all the parameters to be
constant as for the flow about a wedge.

The calculations were accomplished for the supersonic flow about the ducts
having the configuration of a frustum of a cone with semi-angle w. The series
of variants was calculated for different values of duct angle w, free-stream
Mach number M, and angle of attack «. (Only the cases when « <w were
considered, that is the rarefaction wave does not take place at the leading
edge.) The specific heat ratio y was taken as y=1-4.

In Figs. 2-8 some results of these calculations are presented; they were
obtained for 5 meridian planes and 25 nodal points on each ray.
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Fi1G. 3 — Pressure distribution along the duct with w =20° at the angle of
attack « = 10° for various free-stream Mach numbers M,
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The pressure distribution p=p(x) along the surface of the body in the gas
stream with Mach number M =4 is plotted in Fig. 2 for different angles of
attack. The solid lines correspond to the windward side yy =0 and the dotted
lines correspond to the leeward side yy=m. In the intermediate planes
y =const the curves p = p(x) have analogous forms. The small circles here and
further denote the appropriate results for the flow about the sharp cone with
the same semi-angle w, calculated by the finite-difference method of ref. 4. As
is obvious for the flow about the duct at the angle of attack the pressure
approaches rapidly to the asymptotic value corresponding to the sharp cone.

The similar graph of the pressure distribution is given in Fig. 3 for the
duct with w=20°, «=10" and for the various values of free-stream Mach
number M. In Fig. 4 the shock wave traces on the planes y=0 and y=n=n

F1G, 4 — The shock waves in the plane of symmetry for the duct « =20° at
o =10? and various Mach numbers M
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are shown for the same case. At large distances the shock wave inclinations
tend also to the corresponding inclinations for the sharp cone. It is interesting
that for the hypersonic Mach numbers the shock layer thickness on the wind-
ward side is less than that on the leeward side.

The variation of the pressure across the shock layer between the body
surface £=0 and the shock wave £=1 is given in Fig. 5. These results are
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F1G. 5— Variation of pressure across the shock layer for the duct « —20" at
«=10" and various Mach numbers M,

obtained for the duct with @=20 at x=10" and various values of M_. The
pressure profiles are shown for sufficiently large distance x =14 where these
curves are already close to the corresponding dependences for the sharp cone.
It can be seen from this graph that the more rapid approach takes place for
the greater Mach number M, and on the windward side.

The behaviour of entropy s on the external surface of a duct is interesting
at different values of x. In contrast to the sharp cone the external surface of
the duct at the angle of attack is not the constant entropy surface. Here the
lines of constant entropy represent some curves and only two lines s=const
lying in the plane of symmetry of the flow will be straight. Figure 6 shows the
entropy dependence s=s(1/) on the body surface for several planes x=const
in the case w=20", M =4 and 2 =10°.

The pressure distribution against angular variable s is plotted on Fig. 7.
The shape of the shock wave r=rg(}) in the planes x=const are drawn in
Fig. 8 for=10", M =4 and «=5°. The curves shown in these two graphs are
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F1G. 6 — The entropy dependence on the body surface for o =20°, M, =4
and «=10"
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F1G. 7 — Pressure distribution on the body surface for «=30", M, =4
and «=35
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F1G. 8 — The shape of shock wave in the planesx =const for duct w =10°
at M, =4 and 5"

sufficiently smooth and this is important for the approximation with trigono-
metric polynomials (2) used in the present numerical method.

For the calculation of the external supersonic flow about ducts at the angle
of attack it is possible to compute not only the basic gasdynamic functions
but also other different interesting quantities, e.g. the temperature. Further-
more it is easy to calculate the coefficients of total aerodynamic forces acting
on the external surface of the duct (drag and lift coefficients, moment co-
efficient and so on). Using the method developed in ref. 1 it is possible also to
compute the flow about the ducts in the thermodynamic equilibrium gas
stream.

In conclusion we would note that at present we calculate the large series of
supersonic flows about ducts at the angle of attack in the stream of perfect
gas. These results are supposed to be included in the corresponding tables.
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